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Abstract. Measuring percent occurrence of objects from digital images can save time and expense
relative to conventional field measurements. However, the accuracy of image analysis had, until now,
not reached the level of the best conventional field measurements. Additionally, most image-analysis
software programs require advanced user training to successfully analyze images. Here we present a
new software program, ‘SamplePoint,” that provides the user a single-pixel sample point and the ability
to view and identify the pixel context. We found SamplePoint to allow accuracy comparable with
the most accurate field-methods for ground-cover measurements. Expert use of the program requires
minimal training and its ease of use allows rapid measurements from image data. We recommend
SamplePoint for calibrating the threshold-detection level of image-analysis software or for making
direct measurements of percent occurrence from digital images.
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1. Introduction

Ecological assessments incorporating ground-cover (the area, usually expressed as
a percentage, of ground covered by the vertical projection of vegetation, litter, and
rock) measurements have relied on point sampling using point frames (Levy, 1927;
Levy and Madden, 1933) or transect methods (ITT, 1996). Ground cover has also
been measured from images (Cooper, 1924; Pierce and Eddleman, 1973; Ratliff and
Westfall, 1973; Owens et al., 1985; Harris et al., 1996; Bennet et al., 2000; Everitt et
al., 2001; Louhaichi et al., 2001; Richardson et al., 2001). Avery (1962) and Clav-
eran (1966) used dot-grid transparencies to make cover measurements and Wells
(1971) used a microscope grid; however, until recently the adoption of photogra-
phy and image analysis as a convention for ground-cover measurements has been
hindered by image quality and questionable analysis accuracy. Advances in digital
camera and lens technology have improved image sharpness so that 1-mm/pixel
images showing individual blades of grass, pebbles, cracks in soil or flower petals
can be obtained from aerial platforms at 100-m altitude (Booth et al., 2005¢c; Booth
and Cox, 2006). (A pixel is the smallest discreet unit of a digital image. The linear
dimension of a single pixel’s projection on the ground is the ground sample dis-
tance (GSD), a measure of the spatial resolution of an image (Comer et al., 1998)).
With this new imagery, the potential for accurate image analysis is closer to being
achieved, but the accuracy of analysis methods has posed an obstacle.
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The image-analysis methods of Avery, Claveran, and Wells (op. cit.) were
adapted to digital images by using a semi-transparent digital-grid overlay
(DGO)(Photo Paint v 8.2, Corel Corp., Ottowa, Canada') on a computer moni-
tor (Booth et al., 2005a, b, d). Recent work by Booth et al. (2005d) shows that
while field methods such as the Point Intercept, Steel Point Frame and even Oc-
ular Estimation had 97-99% accuracy when tested using 2-dimensional models
with known ground-cover populations, the DGO had an accuracy of only 92%.
Further, VegMeasure, an automated image-analysis software program, had accu-
racy of only 70% when the algorithm-detection threshold was calibrated with the
DGO (Booth et al., 2005b, d).

The contact area of a point-sampling device is recognized as influencing accu-
racy (Cook and Stubendieck, 1986; Booth et al., 2005d), and appears to explain
why the DGO, with a GSD-contact point of 8 mm?, had lower accuracy than almost
all other methods, even though the point-sampling density was the same among
all methods (100 points/m?)(Booth et al., 2005d). A more accurate image analysis
tool was needed.

The measurement of ground cover from images has several potential advantages,
including acceleration of field work, increased flexibility, repeatability, and con-
venience in the time and place actual measurements are made. Our objective was
to improve image point-sampling accuracy by developing an ‘image point frame’
with a reduced contact-point area and increased user-friendliness and efficiency.
The expected benefit was confidence in the method so that the advantages noted
above could be realized and applied in environmental monitoring. We named the
new software ‘SamplePoint’ and here we describe the software and tests of its
accuracy, precision, and utility.

2. SamplePoint Software

SamplePoint was written in the C# programming language. Its primary function is
point-classification of digital images (Figure 1). A user must first create a database
of working images by selecting those images using the Database Wizard within the
software. This process creates a Microsoft Excel (Microsoft Corp., Redmond, WA)
spreadsheet that contains a column listing an identification key, a column listing the
images to be analyzed, and 225 columns for data storage. The program loads the
images listed in the Excel database, and systematically or randomly identifies and
locates a user-defined number of sample points in the image, then takes the user
from one point to the next so that the user can classify each point (Figure 1). The
sample point is always a single pixel of the image. The GSD of this pixel naturally
depends on the resolution of the image loaded, but whatever the resolution, the
pixel is the smallest possible contact point for digital analysis. For images acquired
with a 5-megapixel digital SLR camera from 2-m above ground level, the contact
point is equal to approximately 1 mm? (Booth et al., 2005a). SamplePoint identifies
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Next Image

Figure 1. Screenshot of SamplePoint. Salient features include image window with classification point
crosshairs, user-defined classification buttons, displays showing loaded image and current classifica-
tion point number. Menus provide options.

each sample point by 4 red, 1-pixel-thick lines, arranged in a crosshair pattern, that
lead towards, but not over, the pixel of interest. Thus, the SamplePoint crosshair
allows greater viewing of both adjacent pixels and the sample pixel than is allowed
by the DGO. The image can be zoomed up to 100 x, with options for smooth zoom
or block zoom. Smooth zoom creates new pixels by interpolating actual image
pixels, giving the image a smooth look. Block zoom does not create new pixels,
but repeats original image pixels in two dimensions to yield the visual effect of the
single square pixel growing in size but not changing in color or sharpness. The block
zoom is most useful for identifying single pixel colors. One of 30 buttons under the
image, representing possible ground-cover classes, is clicked by the user to identify
a point, save the user’s classification to the database, and automatically bring up
the next classification point in the image window at the user-defined zoom level.
(Default button labels are grass, forb, shrub, cactus, litter, soil, rock and unknown,
but the labels can be user-defined.) Zooming is performed using keyboard arrow
keys, a scroll-wheel mouse, or by manually typing in a value and clicking the refresh
button. The image name and sample-point number the user is currently examining
are displayed on-screen. Users may define rectangular sampling patterns containing
25, 36, 64, 100 or 225 points that stretch to equally cover the entire image, or users
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may elect to have from 1 to 200 points randomly placed across the image, but
no closer than 30 pixels to the edge. Users can begin point classification at point
1, or specify the starting point, and likewise can begin with the first image of
the database or specify an image. Classification data, as well as the red, green,
blue (RGB) values (spectral components) for each classified point, are saved to the
database. A summary text file can be generated that lists the total cover for each class
for each image. A summary text file listing the RGB values associated with each
pixel classification can also be generated to determine the spectral distinctiveness
of particular classes.

3. A Standard for Comparison: Benchmark Images and Poster Photos

We developed a simplified and quantified representation of ground-cover popu-
lations in a Wyoming big sagebrush vegetation type from 20 randomly-selected
nadir images (Booth et al., 2005d) (Table I). Digital images were acquired using
an Olympus E20 5-megapixel digital SLR camera (Olympus Corp., Tokyo, Japan)
mounted on an aluminum frame 2-m above ground level and had a resolution of
0.97 mm GSD (Booth et al., 2004). Each Tagged Image File Format (TIFF) image
was cropped to a 1-m? field of view (approx. 1275x1275 pixels), and ERDAS
Imagine was used to classify the images into 7 colors (red, brown, black, yellow,
grey, green, white) with varying numbers of shades for a total of 40 discreet col-
ors (Figure 2). The color assignments more or less represented bare ground, green
vegetation, non-green stems, brown grass, litter, rock and gravel, and shadow — but
that representation is less important than the fact that the key parameter of these
artificial populations or models was that cover for each color (i.e. “color cover”
or the percentage of the image covered by the vertical projection of that color) in
the file was exactly known as a result of the ERDAS Imagine classification. These
ERDAS-classified “Benchmark Images” (i.e., the model) were saved as RGB-TIFF
files with an average of 1.6 million pixels each, then printed at actual size (scale
= 1:1) using a poster printer. The artificial populations avoided non-randomness at

TABLE I
Image sets used in this study, and their source
Image set Creation method
Digital images Nadir digital color photographs of rangeland taken 2-m above ground
level.

Benchmark images ERDAS classification of Digital Images into 40 discreet colors. Color
coverage values are precisely-known.

Poster photos Nadir digital color photographs of Benchmark Image poster-prints
(1:1 scale) taken 2-m above ground level.
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Figure 2. One of the 20 benchmark images. The precise amount of each color in the image is known,
and is used as the basis for assessment of user-classification accuracy and precision.

the edge of the field, and constancy of shape, problems that Schultz et al. (1961)
noted as shortcomings of their artificial population board. Thus, the Benchmark
Images duplicated much of the spatial distribution and context of the natural sys-
tem. Posters were laid flat on a smooth floor, photographed as described above,
saved as TIFF images, color-corrected by reference to white and black points, and
cropped to 1 m?, just as the original images had been. The result we refer to as
“Poster Photos” (i.e., photographs of the models).

The primary difference between the Benchmark Images and the Poster Photos is
that while Benchmark Images had, at most, 40 discreet RGB combinations (colors),
the latter contained millions of discreet RGB combinations due to the mixed pixels
that are generated with any digital imaging device (Crapper, 1980). Pixel color is
the combination of all colors within the area the pixel is covering. For example, if
a pixel covers a spot with red and blue in it, the pixel will be purple. Thus, though
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the posters printed from the Benchmark Images had only 40 colors, each time an
image pixel covered an area that had two or more colors (an edge) the pixel color
was a new, non-standard color born from that combination. Millions such colors
were generated in the Poster Photos that were not present in the Benchmark Images.
These mixed-pixels represent an obstacle to accurate image analysis.

In summary, the images for study included a known-population digital image
(Benchmark Image) that simulated and simplified (modeled) the pattern and distri-
bution of real-world rangeland vegetation, plus a photograph of the model (Poster
Photo). Readers should not interpret either the Benchmark Images or Poster Photos
as being intended to represent the actual ground-cover values of the photographed
sites. We believe this method for modeling plant communities has application to any
situation or plant community where there is a need to model the spatial distribution
and context of the natural system while avoiding non-randomness and constancy
of shape.

4. Accuracy Testing

Using the 20 Benchmark Images and 20 Poster Photos, three users with vegetation-
sampling backgrounds, ages 27—44, used SamplePoint to measure color cover for
each 20-image data set three times (six 20-image data sets for each user). Booth
et al. (2005a) have shown that users older than 50 years measure more bare ground
from digital images than users under 50. The order of image set classification was
randomly chosen, with no more than a single 20-image set classified in one day.
Correlation coefficients were generated by three separate analyses of measured-to-
known values for all seven colors: 1) to measure the repeatability of single users we
compared the variation of three measured-to-known correlation coefficients among
the three replicates for each user (n = 7 colors x 20 images = 140 observations),
2) to measure repeatability among users we compared three replicates x 7 colors x
20 images (n = 420 observations) and 3) to establish the efficacy of SamplePoint
software we used all observations (n = 3 users x 3 replicates x 7 colors x 20
images = 1260 observations). From each user’s data, we randomly selected data
sets from Benchmark and PosterPhoto images for regression analysis to known
color-cover values of the original Benchmark Images. Coefficients of variation
were generated to measure relative precision across users. A comparison of known
versus classified colors for 2000 points/image facilitated evaluation of classification
consistency by a single user over time and among different users.

DGO classification of Poster Photos from previous work (Booth et al., 2005d)
was used to compare the performance of SamplePoint using a Poster Photo (mixed-
pixel image). Additionally, Benchmark images were classified using DGO to pro-
vide a direct comparison to SamplePoint classification of Benchmark Images.

To control for gross color differences among monitors, white point was set to
6500 K. All users were provided with a color palette showing the colors used for the
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ERDAS classification of the imagery. SamplePoint and DGO classification time for
each image was recorded by each user. Thus, the final products of the analyses were
accuracy, precision, and speed for single and multiple users. Since accuracy was
evaluated using the same procedure used by Booth et al. (2005d), direct comparison
of SamplePoint’s accuracy with other methods can be made.

The DGO has been used successfully to calibrate software programs capable of
automated image analysis (Booth et al., 2005b). We used VegMeasure (Johnson
et al., 2003), but the concept is applicable to many such programs. Typically,
a random subset of images is classified using DGO and the results used to set
recognition thresholds for color-classification algorithms within the software. DGO
calibration resulted in VegMeasure classification accuracy of 70% (Booth et al.,
2005d). SamplePoint classification data from 5 randomly-chosen images of the
above 20-image Poster-Photo image set were used to calibrate VegMeasure, and the
automated analysis results of the full 20-image data set were checked for accuracy
by comparing the VegMeasure cover values to the known cover values of the Bench-
mark Images. The Poster Photos did not have the same cover for each color that the
Benchmark Images possessed, but the difference was due to mixed pixels. Mixed
pixels in digital imaging are a real-world phenomenon that cannot be avoided. The
Poster Photos were a means to measure pixel-mixing — thus a means to measure the
effects of mixed pixels on the accuracy of cover measurements by digital imaging
techniques.

5. Results

Benchmark Image classification was 98% accurate using SamplePoint (R = 0.98,
P < 0.0001, n = 1260 (3 users x 3 replications x 7 colors x 20 images); Figure
3), but only 90% accurate using the DGO (R = 0.90, P < 0.0001, n = 1260;
Figure 3). Poster Photo classification with either SamplePoint or DGO had 92%
correlation with known values (R = 0.92, P < 0.0001, n = 1260; Figure 3).
SamplePoint classification precision, as measured by coefficients of variation, was
0.11 £ 0.2% (n = 3 users) for Benchmark Images and 1.1 + 1.2% (n = 3 users)
for Poster Photos.

Comparison of known and user-classified colors for every sampling point
showed that users incorrectly identified a clear and unmistakable color, such as
classifying a red pixel as yellow, 11.2 £ 8 times per 2000 points (<1%) (n = 3
users). This ‘human error’ can be attributed to the user looking at the wrong pixel,
or clicking the wrong classification button. We assume this error rate would remain
the same for all imagery, though it could not be measured for the Poster Photos
since the multitude of similar colors make precise color classification debatable.
User error rate decreased with practice. For example, user 2 error rates for each
replicate, in order of completion, were 0.9%, 0.9%, 0.4%. Similarly, user 3 error
rates for each replicate, in order of completion, were 1.4%, 0.8%, 0.6%. User 1 had
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Figure 3. SamplePoint (a and b) and Digital Grid Overlay (c and d) point-classification values re-
gressed with known values for each color-cover sample point for 20 Benchmark Images (a and c¢) and
Poster Photos (b and d) (n = 1260 (3 users x 3 replications x 7 colors x 20 images)). Lines for
each cover class most resembling the dotted 1:1 correlation line indicate the highest accuracy. User
positive bias for some colors and negative bias for others, and (c) were previously reported (Booth
et al., 2005d).

significant prior experience with the software, and showed an unchanged error rate
of 0.1% for all three replicates. This indicates that for optimal accuracy, practice
with the software on the order of 20—40 test images should precede actual data
collection.

DGO classification took 12.7 +9.6 minutes/plot (n = 360 (3 users x 2 data sets
x 20 images x 3 replications)), whereas SamplePoint classification took 4.7 + 0.9
(n = 360) minutes/plot.



POINT SAMPLING DIGITAL IMAGERY WITH ‘SAMPLEPOINT’ 105

VegMeasure classification accuracy improved from 70% when calibrated with
DGO (R = 0.70 £ 0.06, P < 0.0001, n = 420 (3 users x 7 colors x 20 images))
(Booth et al., 2005d) to 82% (R = 0.82 £ .02, P < 0.0001, n = 420) when
calibrated with Sample Point.

6. Discussion

For Benchmark Image classification, the higher accuracy of SamplePoint relative
to the DGO is attributed to the 1-pixel sample point. Black was noticeably under-
counted in all classifications, suggesting that perhaps users subconsciously chose a
nearby color when confronted with the void of black (Figure 3). Red was most of-
ten overcounted, perhaps because red was the most noticeable color in the imagery.
This color bias was previously detected and reported (Booth et al., 2005d) and sug-
gests that brightly colored objects (vegetation) are likely to be overcounted at the
expense of drab-colored objects (soil or rock). On the other hand, color perception
in humans is likely not based on a single factor, but rather it is influenced by multiple
perceptual factors (such as object shape) that create small systematic distortions in
perceived color hues (Abramov and Gordan, 1994; Goldstone, 1995). Complicating
matters even more, Brown and MacLeod (1997) concluded that color perception
was influenced by surrounding color hue and distribution. We did not measure
the effect of color spatial distribution or relations in the experiment, but research
shows that these play some role in classification. Teasing these factors out would
be interesting, but not critical to promoting accurate rangeland cover-measurement
strategies.

The 98% accuracy of SamplePoint classification of Benchmark Images equaled
that of the Point Intercept method (R = 0.98, n = 420 (3 users x 7 colors
x 20 images)), and was only slightly lower than the Steel Point Frame method
(R =0.99, n = 420) (Booth et al., 2005d). For routine classification, SamplePoint
provides potential accuracy comparable with these conventional field methods in
a 2-dimensional setting. We speculate that in the complexity of a 3-dimensional
environment, image analysis by SamplePoint would be more accurate than con-
ventional methods. The 99 and 98% accuracy rates of the Steel Point Frame and
the Point Intercept methods represent accuracy possible with our 2-dimensional
models and not what should be expected for measurements made in 3-dimensional
‘real-world’ environments. We are unable to quantify sources of error for the Point
Intercept and Steel Point Frame under real-world conditions beyond the comments
of Walker (1980) and others (Friedel and Shaw, 1987; NRC, 1994; Donahue, 1999)
but can do so for digital images. There are two primary sources of error inherent in
a captured digital image. These are error due to parallax or “camera view” (Bennett
etal.,2000), and error due to mixed pixels where different reflected spectra mix and
form colors not true to the reflecting entities. Both factors influence the correlation
of SamplePoint measurements with the Benchmark and the Poster Photo images.
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The 92% correlation between known and SamplePoint measurements of Poster-
Photo images is thus a good approximation of the accuracy to be expected under
operational conditions using photographs of comparable quality and resolution.
We question whether conventional measurements in 3-dimensional environments
even approach 90% accuracy. Additionally, the increase in sample numbers that
is possible when using a camera, as described above, results in greater statistical
power relative to using the Steel Point Frame or other conventional field-sampling
methods (Brady et al., 1995; Sundt, 2002).

When used as a calibration tool, SamplePoint also delivers benefits relative to
the DGO, as automated classification accuracy with VegMeasure improved 12%.
Combined with the ease of use, time savings and elimination of potential data
entry errors, SamplePoint shows itself to be a very useful tool for image point
classification, both as a stand-alone tool and as a calibration method for automated-
analyses.
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